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Abstract
Deep learning has recently become a viable approach for classifying Alzheimer's disease
(AD) in medical imaging. However, existing models struggle to efficiently extract features
from medical images and may squander additional information resources for illness
classification. To address these issues, a deep three‐dimensional convolutional neural
network incorporating multi‐task learning and attention mechanisms is proposed. An
upgraded primary C3D network is utilised to create rougher low‐level feature maps. It
introduces a new convolution block that focuses on the structural aspects of the magnetic
resonance imaging image and another block that extracts attention weights unique to
certain pixel positions in the feature map and multiplies them with the feature map
output. Then, several fully connected layers are used to achieve multi‐task learning,
generating three outputs, including the primary classification task. The other two outputs
employ backpropagation during training to improve the primary classification job.
Experimental findings show that the authors’ proposed method outperforms current
approaches for classifying AD, achieving enhanced classification accuracy and other in-
dicators on the Alzheimer's disease Neuroimaging Initiative dataset. The authors
demonstrate promise for future disease classification studies.
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1 | INTRODUCTION

Alzheimer's disease (AD) is a degenerative neurological dis-
order that is difficult to detect in its early stages. Alzheimer's
disease is the most prevalent cause of dementia; however, it can
also be caused by other disorders. As it is frequently chal-
lenging to define the particular dementia subtype, it is difficult
to get an exact estimate of the prevalence of Alzheimer's de-
mentia. The cause of about two‐thirds of all dementia di-
agnoses is commonly acknowledged to be AD. A growing
section of society will likely be impacted, according to studies
that utilised mathematical models to anticipate the frequency
of dementia in the future. These studies took into consider-
ation variables including rising life expectancy, altered mortality
rates, and the prevalence of cardiovascular disease. The con-
ventional method of diagnosing AD using magnetic resonance
imaging (MRI) scans is laborious and arbitrary. As a result, a
more effective and impartial early diagnostic approach is
required. On the basis of MRI scans, deep learning (DL) ap-
proaches have demonstrated significant promise for catego-
rising AD patients; however, accuracy and constraint reduction
must be increased. In order to effectively categorise AD, MCI,
and healthy control (HC) participants based on MRI data, this
study suggests a DL model that makes use of 3D Convolu-
tional neural networks (CNNs). The model seeks to improve
AD diagnostic accuracy and lessen the restrictions of con-
ventional Machine learning (ML) techniques. The research also
aims to contribute to the development of effective and
objective diagnostic approaches for AD and give insights into
the potential of DL techniques for AD diagnosis.

To overcome the limitations of standard ML approaches
for AD diagnosis, we offer an end‐to‐end AD classification
method based on a deep three‐dimensional CNN (CNN). This
approach incorporates an attention strategy to improve feature
extraction capabilities. Furthermore, it incorporates two
auxiliary subtasks, namely Clinical Dementia Rating (CDR)
Scale (CDR) score regression and Mini‐Mental State Exami-
nation (MMSE) score regression, to improve AD classification
findings and enable multi‐task learning. The CDR Scoring
Table provides descriptive anchors to guide the clinician in
giving appropriate values based on interview data and clinical
judgement. Together with CDR Worksheets, the Table is
employed. An overall Global CDR Score may be determined in
addition to ratings for each domain utilising a CDR Scoring
Algorithm or by applying the established scoring guidelines.
The CDR is a copyrighted piece of equipment, and using it
calls for a licence. The Global CDR Score helps describe and
monitor a patient's degree of impairment or dementia, with
0 denoting normal, 0.5 denoting very mild dementia, 1
denoting mild dementia, 2 denoting moderate dementia, and 3
denoting severe dementia.

The Mini‐Mental State Examination (MMSE), a tool for
cognitive screening, provides a rapid, reliable measure of the
cognitive function. It may be employed to identify cognitive
injury, evaluate how severe the impairment is, and monitor
cognitive development. In clinical and academic settings, the

MMSE is the brief cognitive evaluation that is used the most
frequently. The MMSE measures a range of cognitive abilities,
such as language and visual creation, orientation, repetition,
verbal memory, attention, and calculation. The method begins
with standardisation to achieve data enhancement. Then, the
attention mechanism is introduced, and the three‐dimensional
convolutional network is used to obtain features with attention
weights, which can get the most beneficial image position in-
formation for classification tasks. Finally, to optimise the
output of the primary classification task, various fully con-
nected layers (FC) backpropagate iteratively to obtain the
classification output, CDR score, MMSE score, and the two
auxiliary subtasks.

Convolutional neural network may be used to process
images in a way that not only efficiently shrinks the size of a
big quantity of data to a smaller amount of data but also
efficiently keeps the characteristics of the original image. The
input layer, hidden layer, and output layer are all components
of CNN networks, much like other neural networks. Following
convolution, the dimensional characteristics of the picture
continue to split the feature matrix into several single blocks to
determine its maximum or average value, which can help
reduce the dimensionality of the image, speed up the network's
computation, and prevent overfitting. After convolution, the
image's dimensional features are still many; therefore, the
feature matrix is split into multiple single blocks to determine
their maximum or average values. This can help reduce the
number of dimensional features, speed up network calculation,
and prevent overfitting. The fully connected layer, which is the
final layer in the CNN model, computes the final class scores
by combining all local features and the feature matrices of each
channel into vector representations.

The suggested approach works well on the AD classifica-
tion problem, and it is a DL model that can efficiently extract
medical picture information, as shown by ablation and com-
parison tests. The comparative experiment demonstrates that
the suggested strategy performs better in AD classification
than conventional ML techniques. The suggested approach
may aid in the creation of AD diagnostic techniques that are
more effective and impartial. The only accurate way to tell if
someone had AD prior to the early 2000s was through an
autopsy, a procedure that is performed after death. Lab and
imaging tests are now easily accessible to allow a doctor or
researcher to see biological symptoms of the disease or bio-
markers in a living person. Currently, results from blood tests
should be used in combination with other testing rather than
alone to identify dementia. However, these diagnostic tests are
still not widely accessible. Teams of researchers funded by the
National Institute on Aging are still looking into possibilities
for more accurate, less intrusive, and quicker methods of
Alzheimer's diagnosis.

Many scholars at home and abroad have carried out clas-
sification research for the MRI images of AD patients. Tradi-
tional ML methods usually need to select features manually or
semi‐manually as the basis for classification. Different features
will lead to other classification performances, and the choice of
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the classifier will also be different. For example, literature [1, 2]
combined hippocampus and entorhinal cortex volume as fea-
tures and used Support Vector Machines (SVM) to realise AD
classification; literature [3] proposed a multi‐level classification
method for AD classification where the Gaussian Naive
Bayesian classifier is used in the first stage. Then, according to
the classification situation in the first stage, some samples are
inputted to the SVM classifier or KNN classifier for reclassi-
fication. The above classification method may lose vital in-
formation in selecting features, which has significant
limitations. In recent years, a series of deep and perfect
network models such as Alex‐Net [4], VGGNet [5], and
GoogLeNet [6] have been proposed.

Although the above methods have achieved good perfor-
mance in AD classification tasks, they have not effectively used
all the information about AD classification: First, although there
are many classification algorithms for 3D images in DL, due to
the 3D convolutional network computing, the cost is too high,
and most AD classification tasks are still 2D convolutional
learning after slicing 3D images, which will lead to the loss of
crucial structural information; secondly, in the clinical diagnosis
of AD, not onlyMRI images but also other auxiliary information
is necessary. However, the additional clinical data is not used in
most AD classification tasks at present, which causes a waste of
information resources. Alzheimer's disease is a neurological
disorder that worsens with time and is challenging to identify in
its early stages. The conventional method of diagnosing AD
using MRI scans is laborious and arbitrary. As a result, a more
effective and impartial early diagnostic approach is required. On
the basis of MRI scans, DL approaches have demonstrated a
significant promise for categorising AD patients; however, ac-
curacy and constraint reduction must be increased.

Given the above problems, this paper proposes an end‐to‐
end AD classification method based on a deep three‐
dimensional CNN (CNN), which introduces an attention
mechanism to enhance feature extraction capabilities and adds
two auxiliary subtasks, namely the CDR Scale (CDR) score
regression and MMSE score regression to optimise the AD
classification results and realise multi‐task learning. For
standardisation to achieve data enhancement, the attention
mechanism is introduced, and the three‐dimensional con-
volutional network is used to obtain features with attention
weights, which can get the most beneficial image position in-
formation for classification tasks; In order to optimise the
output of the primary classification task, various fully con-
nected layers (FC) backpropagate iteratively to obtain the
classification output, CDR score, MMSE score, and the two
auxiliary subtasks. It can be seen from the ablation experiment
and comparison experiment that the proposed method per-
forms well on the AD classification task, and it is a DL model
that can effectively extract medical image information. The
study proposes a DL model for AD diagnosis using neuro-
imaging features that select features automatically and find the
optimal network structure. The aim is to fill the research gap
by proposing an efficient and effective DL model for AD
diagnosis that outperforms existing models, contributing to the
early prevention of AD and reducing physicians' burden.

2 | RELATED WORK

ResNet [7] has promoted the development of DL, making it in
the medical image. The field of classification has been widely
used [8]. However, there is a large gap between medical and
natural image classification in the network structure: the latter
usually requires a deep network because of the large number of
categories; the former only targets specific types (such as tu-
mours) and pays more attention to detailed information. Based
on DL, literature [9] modified the network layer based on
VGG16 to achieve a better AD classification effect; literature
[10] used an ordinary 3D convolutional network and residual
convolutional network to extract MRI based on the lightweight
principle, several experiments were carried out to determine
the network depth and the number of channels per layer;
literature [11, 23, 24] constructed a new 3D convolution model
HadNet, which fine‐tuned hyperparameters through Bayesian
optimisation.

The examination of high‐dimensional features is the basic
basis for the classification techniques employed in AD classi-
fication, which may result in the dimensionality curse. Feature
selection is an effective way to reduce the number of charac-
teristics by eliminating the irrelevant ones. Currently, AD
classification algorithms employ the feature selection tech-
niques, multi‐task feature selection, group lasso, and principal
component analysis. In multi‐modal techniques, it is common
to predict the class label using a direct combination of these
selected traits from each modality. When adopting the classic
multi‐modal AD fusion method, the various modalities are
generally linearly merged. To describe and capture the rele-
vance across many modalities, sample significance analysis is
crucial in the multi‐modal fusion process.

Convolutional neural networks, recurrent neural networks
(RNNs), and autoencoders are only a few of the DL models
covered in the literature review that have been suggested for
diagnosing AD. The authors discuss the advantages and disad-
vantages of each model and highlight the challenges associated
with feature extraction and selection. Organisations may now
collect data from the Internet of Things (IoT), social media, and
other diverse sources in a variety of forms because of the In-
ternet's quick development. A large‐scale dataset with high
dimensionality is the outcome of the dataset's dimensions
growing at an incredible rate each day. The feature selection
method is important in the world of big data today since it helps
to reduce the dimensionality and overfitting of the learning
process. Different algorithms are better suited to different sorts
of data sets than others. As a result, we should apply all relevant
models and assess the outcomes. Hyperparameter tuning is the
process of selecting the optimal value for each hyperparameter
to improve the model's accuracy. To adjust these hyper-
parameters, you must have a full understanding of their defini-
tions and each one's impact on the model. This process may be
repeated with many successful models. Ensemble techniques are
the approach that is most commonly utilised in entries that are
successful in data science competitions. This approach simply
produces better results by integrating the output of numerous
unsuccessful models. This may be done using boosting and
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bagging (Bootstrap Aggregating) in two ways. One of the most
crucial data modelling techniques is cross‐validation. Before
finishing the model, it is advised to test the model on a sample
that was not used to train it.

In Ref. [15], the authors introduce a personalised intelligent
system that utilises ML techniques to predict and prevent
mental health issues by integrating various features such as
biometric data, lifestyle, behaviour, and social media activities.
Many different learning methods and techniques are said to
have been introduced by ML. Examples of frequently used ML
techniques include supervised learning and unsupervised
learning. With the use of input from labelled data, supervised
learning predicts the outcome. Classification and regression
issues are particularly well‐suited to supervised learning. This
learning aims to interpret the data about particular measures.
Unsupervised learning stands in contrast to supervised
learning, which seeks to interpret the data on its own. There
are neither benchmarks nor rules in unsupervised learning. To
solve a specific problem, the classifiers are also carefully
combined and constructed throughout the ensemble learning
process. Ensemble learning is typically used to improve model
performance or lessen the chance that poorly performing
models will be selected. Furthermore, neural networks and DL
have recently grown in favour among ML approaches due to
their capacity to address a variety of problems, such as picture
identification, audio recognition, and natural language pro-
cessing. Using these techniques, which are based on the neural
networks of the brain, the computers may be able to learn
from the observational data.

In Ref. [16], the authors propose a DL model called 3ACL
that uses 3D MRI data to classify brain tumours, achieving
high accuracy rates and outperforming existing models. By
converting the 3D MRI data into 2D space using the 3t2FTS‐
v2, discriminative 2D‐1D pictures with more significance are
produced. In the 3t2FTS or 3t2FTS‐v1 technique, FOS traits
are assessed to create 2D‐1D pictures that serve as a 3D voxel's
identification. However, in the transition, only FOS traits are
taken into account. Additionally, any additional feature
extraction techniques and normalisation strategies that might
produce reliable 2D‐ID pictures by offering discriminatory
data are not evaluated. Here, it is clear that the method's
inspiration and design may be used to analyse both 3D brain
tissue and tumours. Additionally, all versions may be used for
the examination of 3D‐defined brain illnesses like Alzheimer's
as well as malignancies. In this approach, both versions may be
used to activate common ML techniques (such as DL and
transfer learning) that are based on 2D assessment.

The paper in Ref. [17] provides a thorough analysis of ML
algorithms for the early diagnosis of mild cognitive impairment
and AD while emphasising positive findings from several
research studies. In the early stages of the condition, both
pharmaceutical and nonpharmacological therapies are benefi-
cial in lowering cognitive and behavioural symptoms. At this
stage, it is important to note that AD should be viewed as a
continuum, with people with MCI who may eventually develop
AD dementia already having the disease even though the
cognitive symptoms have not yet materialised. This makes it

crucial to distinguish between MCI individuals who will
develop AD dementia and those who will stay stable.

According to Ref. [18], the authors suggest a DL model
that performs better than existing algorithms by learning a
latent feature representation of the data for classifying AD.
Convolutional adversarial autoencoders are proposed in Ref.
[19] as a way for improving classification accuracy over existing
models and minimising variability in multi‐centre AD classifi-
cation. Using a combination of self‐supervised and semi‐
supervised learning approaches, the authors of [20] suggest a
method for classifying medical images that outperforms cur-
rent models and achieves high accuracy rates. Convolutional
autoencoders are a DL technique that the authors suggest
employing in Ref. [21] to explore the complex structure of AD
and to classify the illness with great accuracy. The authors in
Ref. [22] present a model for classifying AD that achieves
excellent accuracy rates and outperforms previous algorithms
by imputing missing data in multimodal brain pictures. The
research study in Ref. [23] suggests an ensemble model for
categorising AD that includes many deep networks, yielding
greater accuracy than current algorithms. The research study in
Ref. [24] presents an ensemble of deep neural networks trained
by transfer learning for AD classification, outperforming
existing models.

Recent DL models for AD diagnosis using neuroimaging
features include 3D RSA‐DNN [26], dual attention multi‐
instance DL [27], NMF‐TDNet [28], 3D CNN‐based multi-
channel contrastive learning [29], lightweight framework [30],
AlzheimerNet [31], DEMNET [32], multi‐stream CNN [33],
weakly supervised and multimodal SDPN [34], and deep multi‐
task multi‐channel learning framework [35]. Accuracy ranged
from 85.6% to 92.96% for these models.

Several research studies have looked into how DL and
neuroimaging techniques may be used to diagnose AD and
mild cognitive impairment (MCI). Li et al. [36] suggested a
deep sparse autoencoder network that performed well when
combining MRI and positron emission tomography data. PET
is a minimally invasive functional imaging technology that uses
positron emitters to provide crucial information about human
biology and biochemistry. Because it is a three‐dimensional
(3D) approach, it calls for detectors with high‐detection effi-
ciencies and enhanced spatial resolution. Mehta et al. [37]
developed a cascaded DL framework with improved perfor-
mance on medical imaging datasets including Alzheimer's
disease Neuroimaging Initiative (ADNI). Faisal and Kwon [38]
created an automated identification technique based on a deep
CNN model that performed well on the ADNI‐2 dataset.
Gamal et al. [39] suggested a set of 3D CNN models for the
early detection of AD. Finally, Liu et al. [40] demonstrated an
85.6% accuracy on the ADNI dataset for a multimodal neu-
roimaging feature learning strategy for multiclass diagnosis of
AD. These findings show that DL and neuroimaging ap-
proaches have enormous promise for early detection and
individualised therapy of brain illnesses such as Alzheimer's
and Parkinson's.

For MCI conversion prediction, a single‐modal neuro-
image may not be sufficient since it only captures a fraction of
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the data related to brain shrinkage. On the other hand, the
multi‐modal neuroimage can provide extra supplementary data
that can be merged to comprehend the synergy between
various neuroimages. Multi‐modal fusion, which combines
early, late, and mixed fusion approaches, is one of the frontiers
of multi‐modal ML. Multimodal learning is frequently utilised
in the fields of photo categorisation and picture registration.
Interest in multi‐modal fusion stems from two major advan-
tages. For starters, many modalities seeing the same phenom-
ena might yield more robust predictions. Second, to increase
the accuracy of classification findings, complementary infor-
mation might be collected from several modalities using Sparse
Auto Encoder. Deep learning techniques in particular, which
have recently made significant strides in AI technology, have
shown their positive effects on applications in the fields of
genetic medicine and health care. The goal of computer‐aided
AI approaches like DL models is to allow data‐driven algo-
rithms that can, on the whole, help enhance the diagnosis
accuracy of AD using neuroimaging and/or genetic data. For
example, utilising neuroimaging data like MRI images, CNNs
have been employed in DL models to diagnose AD. Since
these promising approaches can easily be applied to many
different data types, including neuroimaging and genomics, DL
models have therefore been proposed to play a major role in
the diagnosis and prediction of AD in the next study.

Memory, language, and emotional stability are all affected
by the degenerative neurological disorder known as AD. The
origin of AD is still unknown, and conventional diagnostic
procedures are subjective and time‐consuming. To avoid AD's
severe stage and stop disease growth, early detection is
essential. Alzheimer's disease is frequently diagnosed using
MRI; however, conventional ML approaches for MRI classi-
fication have a restricted feature selection, which results in
inconsistent classification performances. Deep learning models
have recently demonstrated encouraging results in the diag-
nosis of AD; however, accuracy and performance still need to
be improved. The literature review discussed different DL
models proposed for AD diagnosis, including their advantages
and challenges. Several recent studies have explored DL and
neuroimaging techniques for diagnosing AD and mild cogni-
tive impairment (MCI). These models achieved accuracies
ranging from 85.6% to 92.96%. The paper aims to address the
lack of an efficient method for AD diagnosis by proposing a
DL model that selects features automatically and finds the
optimal network structure. The goal is to contribute to early
AD prevention and reduce physicians' burden. Overall, the
review highlights the potential of DL and neuroimaging
techniques for the personalised treatment of brain diseases
such as AD and MCI.

Alzheimer's disease accounts for 60%–80% of dementia
cases, making it the most prevalent cause of dementia. Alz-
heimer's disease begins with moderate cognitive impairment
(MCI) and eventually deteriorates into a neurodegenerative
type of dementia. It interferes with thinking, damages brain
cells, causes memory loss, and makes it difficult to do simple
activities. Alzheimer's disease is a multifaceted, degenerative
neurological brain disease. Alzheimer's disease is more likely to

develop in MCI patients than in the general population. The
lack of a safe therapy for AD at this time is the largest problem
facing scientists in the field. Nevertheless, modern AD treat-
ments can reduce symptom severity or halt the onset of new
ones. Therefore, it is crucial to catch AD early when it is still in
the prodromal stage. Accurate and early AD identification is
achieved via the use of computer‐aided systems, reducing the
high care costs associated with AD patients—costs that are
predicted to climb sharply. Two types of features, namely re-
gion of interest (ROI)‐based features and voxel‐based features,
are frequently used in early AD diagnosis using standard ML
approaches.

While many research studies have concentrated on the
application of DL and neuroimaging techniques for the diag-
nosis of AD and mild cognitive impairment (MCI), there is a
gap in the literature regarding the incorporation of various
features such as biometric data, lifestyle, behaviour, and social
media activities to develop personalised intelligent systems for
the prediction and prevention of mental health issues. Machine
learning is an AI strategy that uses a variety of techniques to
help an algorithm learn. Supervised, unsupervised, and DL are
the three “learning” methods most frequently utilised in the
healthcare industry. Other ML techniques include reinforce-
ment learning and semi‐supervised learning, which combine
supervised and unsupervised learning. In these techniques, the
algorithm functions as an agent in an interactive environment
and learns by making mistakes and gaining rewards for its
accomplishments. ML techniques do not differentiate between
samples and populations; instead, they find informational
patterns in data that may be used to forecast outcomes for
specific patients. The descriptive component of statistics is
comparable to ML, but the inferential component—which is
the heart of statistics—is distinct since it employs only samples
to form conclusions about the population from which the
sample was taken. Modern ML methods are superior to con-
ventional statistical methods because they can find complicated
(non‐linear), high‐dimensional interactions that might help
with predictions. Furthermore, given their excellent accuracy
rates in other medical picture classification tasks, DL models
with lightweight frameworks and multimodal SDPNs need to
be investigated for their potential in AD diagnosis. Finally,
given that they have demonstrated promising outcomes in
other medical picture classification tasks, deep multi‐task and
multi‐channel learning frameworks need to be investigated for
their potential in AD diagnosis.

3 | PROPOSED WORK

The absence of an effective approach for diagnosing AD is
discussed in the study report. Based on medical imaging, the
conventional AD diagnosis is arbitrary and time‐consuming.
There are drawbacks to ML techniques, such as human feature
selection that might result in the loss of crucial data. Alzheimer's
disease is themost prevalent type of dementia; however, there are
currently no treatments that can stop the condition. The dearth
of reliable disease endpoints and/or biomarkers contributes to

DHAYGUDE ET AL. - 5

 24682322, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12291 by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [07/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the scarcity of effective medications. Utilising ML to analyse
EEG is one method to get past many of the limitations of the
current diagnostic modalities. The problems include the neces-
sity for very large sample sizes and exact EEGsource localisation
employing high‐density devices, as well as the lack of automation
and unbiased artefact removal. The use of irrational feature se-
lection in black‐box ML approaches such as deep neural net-
works is another problem. The paper suggests a DL approach
for diagnosing AD that uses neuroimaging characteristics to
automatically choose features and determine the best network
layout. By putting out a DL model for AD diagnosis that per-
forms better than current models, contributes to AD early pre-
vention, and lessens the load on doctors, the goal is to close the
research gap.

The proposed AD classification method is shown in
Figure 1. This model mainly includes a basic network module,
an attention module, and a multi‐task learning module. The
primary network module is used for feature extraction,
including a total of 5 convolutional blocks (Block); the atten-
tion module is integrated into the midst of the main network to
improve the network's ability to gather enough visual data; the
multi‐task learning module is introduced at the end of the
primary network to supplement the knowledge of two addi-
tional tasks. Convolutional blocks are the fundamental building
blocks of a CNN, which is used to recognise pictures. It
consists of one or more convolutional layers that are used to
take the characteristics of the input picture and extract them.
One or more pooling layers are frequently employed to
minimise the spatial dimensions of the feature maps while
preserving the most crucial data after the convolutional layers.
During one or more convolutional layers, filters are applied to
the input picture to extract features like edges, textures, and
forms. The feature maps are then downsampled by applying
one or more pooling layers to the output of the convolutional
layers. Due to the smaller spatial dimensions of the feature
maps, the computational efficiency of the network is improved,
and the likelihood of overfitting is decreased. To predict or
categorise the image, one or more fully connected layers are
subsequently applied to the output of the pooling layers. In the
first phases of a CNN, convolutional blocks are utilised when
the main objective is to extract characteristics from the input
picture. In the network, they are frequently repeated numerous
times, with each block collecting increasingly detailed infor-
mation from the output of the one before it. The network can
learn increasingly detailed information because of its hierar-
chical structure, which enhances picture recognition ability.

3.1 | Basic network

Brain MRI images are three‐dimensional images. Many previ-
ous studies were based on the two‐dimensional slice data of
brain MRI images. Still, the work of obtaining 2D slice data is
time‐consuming, and easy to lose much important information.
In order to effectively categorise AD, MCI, and HC partici-
pants based on MRI data, this work proposes a DL approach
that makes use of 3D CNNs. The model seeks to improve AD

diagnostic accuracy and lessen the restrictions of conventional
ML techniques. The study also aims to contribute to the
development of effective and impartial AD diagnostic ap-
proaches and to give insights into the possibilities of DL
techniques for AD diagnosis. The absence of an effective
approach for diagnosing AD is discussed in the study report.
Based on medical imaging, the conventional AD diagnosis is
arbitrary and time‐consuming. There are drawbacks to ML
techniques, such as human feature selection that might result in
the loss of crucial data. The study proposes a DL model for
AD diagnosis using neuroimaging features that select features
automatically and find the optimal network structure. The aim
is to fill the research gap by proposing an efficient and effective
DL model for AD diagnosis that outperforms existing models,
contributing to the early prevention of AD and reducing
physicians' burden.

Based on previous research experience, this paper builds a
three‐dimensional volume. The three‐dimensional convolu-
tional network was first proposed by literature [12, 25] for
human action analysis and recognition. Compared with the
two‐dimensional convolution, the three‐dimensional convolu-
tion can better capture the sequence information and retain
more. In this paper, the C3D network [13, 26, 27] is selected as
the primary network to retrieve the features of images. The
C3D network is a classic general‐purpose network, first used
for behaviour recognition and video feature extraction—one
of the networks. Owing to a large amount of calculation of
3D MRI images and the apparent difference between medical
image datasets and action recognition datasets, this paper im-
proves its network structure to apply C3D to AD classification
more quickly and effectively. The network structure is pre-
scribed in Table 1.

The primary network retains five convolutional blocks of
C3D, and each block contains a pooling layer to downsample
the image, and the pooling layer can expand the receptive field.
The experiments in the literature [13] prove that for the 3D
convolutional network, all the convolution layers use a
3 � 3 � 3 small convolution kernel to achieve the best results;
so all convolution layers in the proposed primary network use a
3 � 3 � 3 convolution kernel. Except for the pooling layer size
and the step, the size is 1 � 2 � 2. The size and measure length
of all subsequent pooling layers are set to 2 � 2 � 2; so if the
input size of Block 1 is (N, C, D, H, and W), the output size of
the final Block 5 is (N, C0, D/16, H/32, and W/32), where N is
the count of batches, C and C0 are the count of channels, and
D, H, W, are three‐dimensional image information. The
number of data sets is usually tiny; so the batch normalisation
layer (Batch Normalisation, BN) is very suitable for medical
image tasks. Its role is to accelerate network convergence and
prevent overfitting. This paper adds a BN layer to the primary
network, significantly improving the network performance and
speeding up the training speed. After Block 5, the fully con-
nected layer integrates the features, outputs the probability of
different categories, and then uses the type corresponding to
the maximum probability as the classification result.

For feature extraction in three subtasks and the primary
classification task, the convolution layers are employed. A
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merged layer that combines all learnt features from the sub-
tasks is utilised after the dense layer. Before the output layers,
all jobs employ two completely linked layers. To enhance
performance generalisation, the multi‐task learning paradigm
employs associated tasks. By using a single architecture to share
the same subset of parameters and provide an inductive bias
between them during training, the hard parameter‐sharing
technique is a popular method for learning many tasks. The
scientific and business worlds have been interested in it
because of its simplicity, capacity to increase generalisation, and

ability to lower processing costs. Determining how the gradi-
ents of many tasks should be mixed to facilitate simultaneous
learning, however, is difficult since tasks frequently clash with
one another. We employ the concept of multi‐objective opti-
misation to solve this issue and offer a technique that takes into
consideration the temporal behaviour of the gradients to build
a dynamic bias that modifies the weighting of each job during
backpropagation. To ensure that the simultaneous learning is
leading to the performance maximum of all tasks, the method's
outcome is to devote more attention to the tasks that are

F I GURE 1 3D convolutional network based on the attention mechanism and multi‐task learning.

DHAYGUDE ET AL. - 7
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diverging or that were not benefitted during the previous it-
erations. Therefore, we empirically demonstrate that the sug-
gested strategy outperforms the cutting‐edge methods for
learning contradictory tasks.

3.2 | Attention module

The use of the attention mechanism has increased recently in
related DL fields, and it has had positive effects on speech
recognition, natural language processing, and picture process-
ing [14, 28]. Speech recognition is a function that enables the
programme to translate spoken language into written text. It is
sometimes referred to as automatic speech recognition, com-
puter speech recognition, or speech to text. Despite the
availability of voice recognition software and hardware, the
most sophisticated solutions rely on AI and ML. To compre-
hend and process spoken language, they incorporate grammar,
syntax, signal composition, and audio and voice signal struc-
ture. They should ideally learn as they go, developing their
replies with each engagement. The finest solutions also enable
firms to modify and adjust the technology to their own needs,
from brand recognition to language and voice idiosyncrasies.

Specifically, the area of “artificial intelligence” (AI) known
as “natural language processing” (NLP) in computer science
focuses on giving computers the ability to understand spoken
and written language similarly to humans. NLP, or computa-
tional linguistics, is the use of rule‐based modelling of human
language with statistical, ML, and DL models. Together, these
technologies enable computers to interpret human language in
the form of text or audio data and to “understand” the whole
meaning of what is being said or written, including the purpose

and emotion of the speaker or writer. NLP is the driving force
behind computer algorithms that translate text between lan-
guages, heed spoken commands, and swiftly sum up enormous
volumes of information—even in real time.

Image processing is transforming an image into a digital
format and performing particular operations on it to extract
useful information. If particular defined signal processing
techniques are applied, the image processing system normally
interprets all images as 2D signals. The main component of an
image processing system is a general‐purpose computer, which
can range in size from a PC to a supercomputer. To achieve a
particular level of performance, specially constructed com-
puters are occasionally used in specialised applications. The
process of processing images begins with picture acquisition.
Preprocessing is another name for this phase in the image
processing process. It requires getting the picture from a
source, often one that is hardware‐based. The act of empha-
sising and bringing to light specific interesting aspects in a
hidden image is known as image enhancement.

The attention mechanism's objective is to choose the most
pertinent information from a massive amount of input, much
to the visual attention mechanism in the human brain. After
training, the attention weight in the test phase is fixed, but the
input samples are different, and the final attention also varies.
The value of the force is also added, that is, the attention of
each piece is specific. Depending on the style of expression,
the attention mechanism can be classified as either hard or soft
[17, 32, 33]. A certain size is either paid attention to or not
when it comes to complex attention, which is a 0/1 problem.
Hard attention gives greater attention to areas or channels,
using varying values between 0 and 1 to show the degree of
attention to each region. Soft attention may be differentiated,
and the model computes the gradient to determine the atten-
tion module's weight using backpropagation. The attention
module in this paper is built using a spatial domain attention
method based on soft attention. The spatial domain attention
mechanism demonstrates that the information in other channel
domains is what determines how much attention is paid to
various spots on the picture.

A tensor of numbers in the range [0, 255] can be thought
of as a picture. When using a set of words for categorisation,
translation, or other NLP tasks, the original text Transformer
utilises those words as input. To implement the Transformer
design for ViT, we make the fewest changes necessary to
convert it from operating on words to directly operating on
images. We then see how much the model can learn about a
visual structure on its own. Because ViT does not natively
know the relative positions of patches in the image or even that
the image has a 2D structure, it must acquire such essential
knowledge from the training data and store structural infor-
mation in the position embeddings. When used on ImageNet,
where we initially train ViT, it earns a top‐1 accuracy score of
77.9%. The best CNN trained on ImageNet with no additional
data currently achieves 85.8%; so although this is respectable
for a first try, it is far from the state of the art. ViT overfits the
ImageNet task since it has no built‐in understanding of pic-
tures, despite mitigating techniques (such as regularisation). We

TABLE 1 Structure of improved C3D network.

Structural units Improve network

Block 1 3 � 3 � 3, 64, Conv1a

1 � 2 � 2, Pool

Block 2 3 � 3 � 3, 128, Conv2a

2 � 2 � 2, Pool

Block 3 3 � 3 � 3, 256, Conv3a

256, batch normalisation

3 � 3 � 3, 256, Conv3b

2 � 2 � 2, Pool

Block 4 3 � 3 � 3,512, Conv4a

512, batch normalisation

3 � 3 � 3,512, Conv4b

2 � 2 � 2, Pool

Block 5 3 � 3 � 3, 512, Conv5a

512, batch normalisation

3 � 3 � 3, 512, Conv5b

2 � 2 � 2, Pool
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train ViT on ImageNet‐21k (14 million pictures, 21 thousand
classes) and JFT (300 million images, 18 thousand classes) to
examine the effect of dataset size on model performance. We
then compare the findings to those of a state‐of‐the‐art CNN
named Big Transfer (BiT) trained on the same datasets. When
trained on ImageNet (1M pictures), ViT severely underper-
forms the CNN counterpart (BiT), as was previously noticed.

As shown in Figure 2, in addition to the existing con-
volutional layer, pooling layer, and BN layer of the primary
network, the Attention module also includes a normalisation
layer that limits the output range. Convolutional layers are the
fundamental components of CNNs. Applying a filter to an
input to create an activation is a simple procedure known as
convolution. By continuously using the same filter on an input,
such as a picture, a feature map is created that displays the
locations and degrees of a recognised feature in the input.
Convolutional neural networks are innovative in that they may
adhere to the constraints of a specific predictive modelling
problem, such as image classification, while automatically
learning a large number of parallel filters customised to a
training dataset. As a result, input photographs may have
incredibly unique characteristics that are not found anywhere
else. Convolutional neural networks, or CNNs, are a specific
type of the neural network model developed for use with two‐
dimensional image data, while they may also be utilised with
one‐ and three‐dimensional data. This layer performs
“convolution”, a procedure. A linear process called convolu-
tion in the context of a CNN entails multiplying a set of
weights with the input, much like in a conventional neural
network. Given that the method was designed for two‐
dimensional input, a two‐dimensional array of weights called
a filter or kernel is multiplied by an array of input data.

The following takes the Attention module as an example to
introduce the details of each network layer. Assuming that the
output of Block 3 in Figure 1 is F3, F3 is inputted to the
Attention module and Block 4 simultaneously, the former first
passes through a convolutional layer, and the formula of the
convolutional layer is shown in Formula (1).

FiAtt−l ¼
X

j∈MN

FjN ∗ Kij
Att−l
þ biAtt−l ð1Þ

Among them, FiAtt−l refers to the ith feature map with

respect to the nth network layer in the Attention module, FjN
refers to the jth feature map output by Block N, Kij

Att−l
refers to

the convolution kernel connecting FiAtt−l and FjN in the nth
network layer of the Attention module, ∗ represents the
convolution operation, biAtt−l is the bias item, and MN repre-
sents the number of feature maps output by Block N.

The convolutional layer updates parameters during
training, which will cause changes in the distribution of sub-
sequent input data. The BN layer can solve the above prob-
lems. The principle is to normalise the intermediate data of
network. The computation formula of the BN layer is as
follows:

yi ¼ γ
�

xi − μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ ε
p

�

þ β ð2Þ

Among them, xi refers to the input data; yi represents the
output; μ represents the mean value; σ2 represents the variance;
γ and β are learnable reconstruction parameters introduced to
ensure that the learnt feature distribution remains unchanged
and are related to the channel dimension. Before the network
activation function, the forward conduction formula after
introducing the BN layer is as follows:

FATT 2 ¼ f ðBNðFATT₋1ÞÞ ð3Þ

Among them, f(.) represents the linear rectification func-
tion (Rectified Linear Unit, ReLU), BN(.) represents the nor-
malisation processing of the BN layer, FAtt_1 represents the
output with respect to the previous convolution, and FAtt_2
represents the output after the BN layer and the activation
function.

From Formula (1), the output FAtt_3 of the next con-
volutional layer can be obtained and inputted to the pooling
layer. This paper adopts the maximum pooling method, and
the maximum value in the area is taken as the output, which is
issued to decrease the resolution and increase the receptive
field, and its calculation formula can be expressed as follows:

FiAtt−4 ¼ wi
Att−4 · down

�
f
�
FiAtt−3

��
þ biAtt−4 ð4Þ

Among them, wi
Att−4 represents the pooling parameter of

the ith feature map, down (·) represents the pooling function
and FiAtt−3 refers the ith feature map of the previous output.
After pooling, FAtt_5 is obtained from Formula (1) through the
convolutional layer and then passed to the normalisation layer.
The function of the normalisation layer is to output the pre-
vious layer. Converted to probability, its calculation formula is
as follows:

FiAtt ¼
FiAtt−5 − min

�
Flatten

�
FiAtt−5

��

sum
�
FiAtt−5

� ð5Þ

Among them, FiAtt refers to the ith feature map output by
the Attention module, and FiAtt−5 refers to the ith feature map
output by the previous convolution. Flatten(·) is an expansion
function that returns a folded one‐dimensional array. min(·)
represents the calculation of the minimum value of each row of
the current feature map, and sum(·) means calculating each
row's sum.

According to the above formula, the output F4 of Block 4
can be obtained in the same way: Assuming that the input size
is (b, c, d, h, and w), then the size of F4 is (b, 2∗c, d/2, h/2, and
w/2), the output size of the Attention module is (b, 1, d/2, h/
2, and w/2). The input of Block 5 is the product of the two, as
shown in Formula (6):

DHAYGUDE ET AL. - 9
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F ¼ FAtt · Fi4; i¼ 1; 2;⋯; 2 ∗ c ð6Þ

More specifically, the output of the Attention module is
multiplied by each feature map output by Block 4 to realise the
attention mechanism's introduction.

3.3 | Multi‐task learning module

Multi‐task learning transfers the knowledge points of one task
to other tasks; the purpose is to use the valuable information
contained in multiple studies to learn more accurately; the key
is that each job is related, and various sub‐tasks are trained in
parallel. Furthermore, multi‐task learning can share parameters
[18, 34, 35], improving the model's generalisation ability to a
certain extent. In deep education, there are often two types of
multi‐tasking: parameter soft‐sharing mechanisms and param-
eter hard‐sharing mechanisms. Each job has its own parame-
ters and models; the latter shares the hidden layer's parameters,
and the only output layer that preserves distinct parameters is
the one for that task. Compared with the two, the parameter
hard‐sharing mechanism has fewer parameters, which can
effectively prevent the model from overfitting, making it more
suitable for the small amount of medical image data.

This paper uses multi‐task learning on the basis of the
parameter hard‐sharing mechanism in order to realise AD
classification. The main task is AD classification, and the auxil-
iary sub‐tasks are set to CDR score regression and MMSE score
regression. Evaluating a patient's cognitive impairment degree is
finally integrated into a total score; MMSE is one of the most
influential cognitive impairment screening tools. Both are
correlated with AD classification and can be used as auxiliary
subtasks.

The way to achieve the proposed multi‐task learning is
shown in the Multi‐task module in Figure 1. The final classi-
fication probability and CDR and MMSE scores are obtained
using the fully connected layer. The computation formula of
the fully connected layer is as follows:

yi ¼ f
�
wi ·

�
Flatten

�
xi
��
þ bi

�
ð7Þ

Among them, xi represents the ith feature map of the
input, and wi defines the fully connected parameters. The
channels of the two thoroughly combined layers shared are
4096 and 2048 in turn. An additional dropout layer is added
to discard neurons with a certain probability to prevent
overfitting and improve the training speed. The main task is
followed by adding a fully connected layer with a channel of
2, and the CDR and MMSE tasks are followed by adding
two thoroughly combined layers. These three tasks are
trained simultaneously, sharing all parameters before the
branch and updating according to backpropagation model
parameters with the primary task of AD classification as the
final output.

The loss function consists of the classification loss of the
actual label and the predicted result in the AD classification
task, the CDR regression loss and the MMSE regression loss in
the auxiliary job. The computation method of the loss function
is shown in Formula (8):

Loss¼ Lmain þ αLCDR þ λLMMSE ð8Þ

Among them, Lmain represents AD classification loss, LCDR

represents CDR regression loss, LMMSE represents MMSE
regression loss, and α and λ are loss balance coefficients.

F I GURE 2 Attention module.
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Lmain utilises the cross‐entropy loss function, LCDR and
LMMSE use the Huber loss function, and the computation
formula of the latter is as follows:

Lδ
�
Ii; yi

�
¼

1
N

XN

i¼1

8
>><

>>:

1
2
�
Ii − yi

�2
;
�
�Ii − yi

�
� ⩽ δ

δ
�
�Ii − yi

�
� −

1
2

δ2;
�
�Ii − yi

�
� > δ

ð9Þ

Among them, Ii is the actual label of the ith sample, yi is
predicted value, N is the total number of pieces, and δ is the
hyperparameter.

4 | DATASET AND PREPROCESSING

4.1 | Experimental data

The public dataset for the AD Neuroimaging Initiative
(ADNI), made available by Michael W. The ADNI dataset
consists of four subsets: ADNI‐1, ADNI‐GO, ADNI‐2, and
ADNI‐3. This study on the categorisation of AD makes use
of MRI data from ADNI‐1 that was gathered between 2004
and 2009 using the 1.5 T protocol. The experimental data
consisted of 638 samples that were split into three groups:
the training set, the verification set, and the test set. These
groups made up 70%, 10%, and 20% of the total data,
respectively.

4.2 | Image preprocessing

An example of the MRI image in the ADNI dataset is depicted
in Figure 3. From left to right are the Coronal, Sagittal, and
Axial directions of the MRI image, corresponding to the front‐
to‐back, left‐to‐right, and top‐to‐bottom sections. Subjects
during MRI scan imaging are also images of different angles in
the obtained MRI images due to head down, tilted, and
backwards. Brain MRI images also contain non‐brain parts
(such as skulls) that are useless for AD classification non‐brain
parts are noise signals for classification tasks.

Given the above problems, the preprocessing process of
Sagittal direction, as an example, is illustrated in Figure 4, and
the precise steps are mentioned below.

Step 1 Origin correction. Use the MATLAB Statistical Pa-
rameters Mapping (Statistical Parameters Mapping, SPM)
toolbox to correct the origin of the brain MRI image using the
AC‐PC origin correction method, AC is the anterior
commissure (Anterior Commissure), and PC is the posterior
commissure (Posterior Commissure). First, adjust the vertical
line of the crosshair to roughly pass through the middle of the
coronal and axial views so that the intersection point coincides
with AC as much as possible, and then adjust the horizontal
line of the sagittal crosshair to pass through AC and PC to
achieve origin correction.

Step 2 Remove the skull. The process of removing the head is
divided into three phases. First, use the SPM tool to separate
the MRI image after origin correction into three parts: grey
matter, white matter, and other brain tissues, and then add
these three parts directly to form a brain binary value. Finally,
dot multiplication between the template and the origin‐
corrected MRI image to obtain the image without the skull.

Step 3 Unify the size. The MRI images in the data set have
multiple sizes: 256 � 256 � 166, 192 � 192 � 160 etc. To
reduce the calculation burden of the 3D CNN, the MRI image,
after the skull was removed, was down‐sampled. Finally, an
MRI image with a size of 79 � 95 � 79 was obtained.

Step 4 Data augmentation. Due to the lack of experimental
data, data augmentation is realised by adding noise, random
flipping, and normalisation to the preprocessed MRI images.

5 | EXPERIMENTATION AND
ANALYSIS

5.1 | Evaluation criteria

To quantitatively evaluate the proposed method, the most
commonly used accuracy (Accuracy, Acc), sensitivity (Sensi-
tivity, Sens), and specificity (Specificity, Spec) is used as the
evaluation indicators of the AD classification algorithm on the
ADNI dataset. The calculation formulas are as follows:

Acc ¼
TP þ TN

TP þ FP þ TN þ FN
ð10Þ

Sens ¼
TP

TP þ FN
ð11Þ

Spec ¼
TN

FP þ TN
ð12Þ

FP stands for false positive, referring to the proportion of
healthy samples that are incorrectly classified as patients; True
positive, abbreviated as TP, refers to the proportion of patient
samples that were accurately diagnosed; an assessment of the
percentage of correctly diagnosed healthy samples is known as
True Negative, or TN; The number of incorrectly positive
samples is referred to as the “false negative” (FN) rate. Cut
into pieces that fit, a number of patient samples were used.

5.2 | Experimental setup and parameter
analysis

In this study, TensorFlow [19] was utilised as the DL frame-
work, and after pre‐training on the action recognition dataset
UCF101, the convolutional layer parameters of the C3D model
were used to initialise the parameters of the matching network
layer. The adaptive moment estimation (Adam) optimisation
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technique was applied, with a total of 10,000 training repeti-
tions, an initial learning rate of 0.0001, and a reduction in
learning rate to 1/20 of the original for each iteration of 25
epochs. The number of learning samples used each time was 8,
and the hyperparameters δCDR and δMMSE in Formula (9)
were set to 0.5 and 7.0, respectively. The loss balance co-
efficients of auxiliary subtasks CDR regression and MMSE
regression were represented by α and λ, respectively, in For-
mula (8). Since the main task of the model is AD classification,
the value range of α and λ typically ranges from 0 to 1. In our
HC experiment, we first fixed λ = 0 and then set α to take
values at intervals of 0.1. Figure 5 shows the model's perfor-
mance on the verification set after training when α takes
different values. We found that when α is 1.0, the AD versus
HC classification effect is the best; so in the follow‐up
experiment about multi‐task learning, AD versus α was set
to 1.0 in HC experiments.

According to the above experiments, the hyperparameter
α = 1.0 is fixed, based on ADvs. The parameter λ was adjusted
in the HC experiment. The value of λ also takes 0.1 as an

F I GURE 4 Preprocessing flow.

F I GURE 3 Magnetic resonance imaging (MRI) image example.

F I GURE 5 Performance of different values of α (AD versus HC).
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interval, and it can be seen from Figure 6 that when λ = 0.3,
the classification effect of the HC experiment is the best.
Therefore, for ADvs, in the HC experiment, α was set to 1.0,
and λ was set to 0.3.

In the same way, based on MCIvs, the hyperparameters α
and λ of the HC experiment can be seen in Figures 7 and 8 that
α and λ are 0.2 and 0.6, respectively. In all subsequent exper-
iments based on multi‐task learning, α and λ are set according
to this conclusion.

5.3 | Experimental comparison

A model ablation experiment was designed to verify the pro-
posed method's effectiveness, and the results are shown in
Table 2.

On the whole MCIvs, the accuracy rate of HC experi-
ments is generally higher than that of AD vs HC experi-
ment which is low because the brain atrophy of the MCI
patients is closer to that of HC subjects than that of AD
patients, and it is more difficult to distinguish. The
C3D þ BN model means that the BN layer is introduced
based on C3D, and it can be observed from Table 2 that its
effect on MCI vs HC is better. The improvement effect of
the HC experiment is significant. Before adding the BN
layer, the network is difficult to compare the MCI and HC
subjects, and the accuracy rate is as low as 0.5, equivalent to
random guessing. It is speculated that this is due to the
UCF101 data used in pre‐training the original C3D network.
The set is human action video data, far from the medical
classification task. When the C3D network is trained on
brain MRI images, the amount of MCI and HC data is too
small, which leads to overfitting, and the accuracy rate is
extremely high on the test set. The C3D þ BN þ Attention
model means that the attention mechanism is introduced
separately based on the former.

The findings in Table 2 demonstrate that it mostly enhances
ADvs and the classification accuracy rate of HC trials. The re-
sults show that the C3D þ BN þ Multitask model, which rep-
resents the introduction of multi‐task learning alone, is more
advantageous to the MCIvs HC experiment than the ADvs, for
whom the HC experiment has a less favourable impact on the
enhancement of the attention mechanism. After both are
introduced (the proposed algorithm), compared with the pri-
mary C3D network, ADvs, the accuracy of HC experiments
increased by 7%, MCIvs. The accuracy of the HC experiment is
also increased from 0.5 to 0.8097, which proves the effectiveness
of the BN layer, multi‐task learning and attention mechanism in
improving the accuracy of AD classification.

Table 3 compares the proposed algorithm with the
experimental results of some recent studies. For example,
literature [20] uses the recurrent gated unit of the RNN to
extract slice features for final classification; literature [21] in-
troduces ensemble learning into the convolutional network and
proposes a multi‐slice ensemble classification model; literature
[22] analysed the shape of the hippocampus and used a 3D
densely connected convolutional network for AD

F I GURE 6 Performance of different values of λ (AD versus HC).

F I GURE 7 Performance of different values of α (MCI versus HC).

F I GURE 8 Performance of different values of λ (MCI versus HC).

TABLE 2 Comparison of ablation experiments.

Model

Acc

AD versus HC MCI versus HC

C3D 0.8721 0.5000

C3D þ BN 0.8983 0.7273

C3D þ BN þ Attention 0.9186 0.7386

C3D þ BN þ Multitask 0.9157 0.7642

Presented work 0.9448 0.8097
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classification. The results in Table 3 show that, in comparison
to the first two methods, the proposed algorithm has AD
versus HC/MCIvs, which has a distinct competitive advantage
in classification performance. The accuracy rate of the HC
experiment increased by 3%–13%/2%, and the sensitivity
increased by 6%/5.5%. This is because the first two methods
are limited to 2D slice data; however, extracting slices has been
dramatically improved compared with the traditional method
of removing the middle position of the slice sequence interval;
its reserved features are still incomplete, which affects the
classification performance.

The third method also uses a three‐dimensional convolu-
tional network, but it differs from the algorithm in this paper,
its MCIvs. The classification performance of HC is poor, with
a difference of 6% in accuracy, 6% in sensitivity, and 7% in
specificity in the experiment. This is so that the proposed al-
gorithm can more effectively use the clinical correlation be-
tween CDR, MMSE score, and AD classification, as well as the
feature information of 3D MRI images based on the attention
mechanism, and to improve the performance of the MCIvs
HC experimental classification. It is important to note that, in
comparison to these three techniques, the suggested algo-
rithm's specificity is subpar. The percentage of HC participants
that were accurately classified as disease‐free is essentially what
defines specificity. Patients diagnosed with the disease usually
undergo further follow‐up examinations to correct the misdi-
agnosis, so a certain degree of specificity can be sacrificed to
ensure higher sensitivity.

6 | CONCLUSION

Given the aforementioned issues, this paper proposes an end‐
to‐end AD classification method based on a deep 3‐D CNN
(CNN), which includes an attention mechanism to improve
feature extraction capabilities and two auxiliary subtasks,
namely CDR Scale (CDR) score regression and MMSE score
regression, to optimise AD classification results and realise
multi‐task learning. The attention mechanism is then imple-
mented, and the 3‐dimensional convolutional network is uti-
lised to acquire features with attention weights, which may
gain the most advantageous picture position information for
classification tasks. In order to properly extract medical pic-
ture features and avoid wasting clinical auxiliary information
resources for AD classification, this article used deep 3‐
DCNN and proposed an AD classification algorithm. This

study conducts tests on the ADNI data set to demonstrate
that the suggested model can effectively classify AD and
outperforms competing algorithms. The public dataset for the
Michael W. Neal AD Neuroimaging Initiative (ADNI) was
made accessible. ADNI‐1, ADNI‐GO, ADNI‐2, and ADNI‐
3 are the four subsets that make up the ADNI dataset. The
MRI data from ADNI‐1 that was collected between 2004 and
2009 using the 1.5 T procedure is used in this study on the
classification of AD. The 638 samples that made up the
experimental data were divided into three groups: the training
set, the verification set, and the test set. 70%, 10%, and 20%,
respectively, of the total data came from these groups.
However, in the proposed algorithm, when comparing MCIvs
with ADvs, the performance of HC experiments is poor. In
the future, we will further explore the structural features of
MCI patient images by combining multi‐scale information,
introducing adversarial samples, and optimising the classifi-
cation loss function to adapt to unbalanced sample classifi-
cation during the training task.
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